今天给各位分享关于量化投资策略,以及量化投资策略有哪些对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。内容导航:什么是量化投资?什么是量化策略基金的量化投资策略有...

今天给各位分享关于量化投资策略,以及量化投资策略有哪些对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

内容导航:什么是量化投资?什么是量化策略基金的量化投资策略有哪些?量化投资常见的策略和产品什么是量化投资交易策略股票里面的量化是什么意思什么是量化投资?有哪些常见的量化投资策略?Q1:什么是量化投资?

量化投资指的是一种投资方法,它是指通过数量化方式或计算机程序化发出买卖指令,以得到稳定收益为目标的交易方式。量化投资是一种定性思想的量化应用,它对大量的指标数据进行分析,得出一些有说服力的数据结论,然后通过计算机技术进行数学建模,并进行量化分析,从而得出一个比较契合实际的投资策略。

量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。从全球市场的参与主体来看,按照管理资产的规模,全球排名前四以及前六位中的五家资管机构,都是依靠计算机技术来开展投资决策,由量化及程序化交易所管理的资金规模在不断扩大。

Q2:什么是量化策略

什么是策略?

策略,可以实现目标的方案集合;在证券交易中,策略是指当预先设定的事件或信号发生时,就采取相应的交易动作。

什么是量化策略?

量化策略是指使用计算机作为工具,通过一套固定的逻辑来分析、判断和决策。

量化策略既可以自动执行,也可以人工执行。

一个完整的量化策略包含哪些内容?

一个完整的策略需要包含输入、策略处理逻辑、输出;策略处理逻辑需要考虑选股、择时、仓位管理和止盈止损等因素。

选股

量化选股就是用量化的方法选择确定的投资组合,期望这样的投资组合可以获得超越大盘的投资收益。常用的选股方法有多因子选股、行业轮动选股、趋势跟踪选股等。

1 多因子选股

多因子选股是最经典的选股方法,该方法采用一系列的因子(比如市盈率、市净率、市销率等)作为选股标准,满足这些因子的股票被买入,不满足的被卖出。比如巴菲特这样的价值投资者就会买入低PE的股票,在PE回归时卖出股票。

2 风格轮动选股

风格轮动选股是利用市场风格特征进行投资,市场在某个时刻偏好大盘股,某个时刻偏好小盘股,如果发现市场切换偏好的规律,并在风格转换的初期介入,就可能获得较大的收益。

3 行业轮动选股

行业轮动选股是由于经济周期的的原因,有些行业启动后会有其他行业跟随启动,通过发现这些跟随规律,我们可以在前者启动后买入后者获得更高的收益,不同的宏观经济阶段和货币政策下,都可能产生不同特征的行业轮动特点。

4 资金流选股

资金流选股是利用资金的流向来判断股票走势。巴菲特说过,股市短期是投票机,长期看一定是称重机。短期投资者的交易,就是一种投票行为,而所谓的票,就是资金。如果资金流入,股票应该会上涨,如果资金流出,股票应该下跌。所以根据资金流向就可以构建相应的投资策略。

5 动量反转选股

动量反转选股方法是利用投资者投资行为特点而构建的投资组合。索罗斯所谓的反身性理论强调了价格上涨的正反馈作用会导致投资者继续买入,这就是动量选股的基本根据。动量效应就是前一段强势的股票在未来一段时间继续保持强势。在正反馈到达无法持续的阶段,价格就会崩溃回归,在这样的环境下就会出现反转特征,就是前一段时间弱势的股票,未来一段时间会变强。

6 趋势跟踪策略

当股价在出现上涨趋势的时候进行买入,而在出现下降趋势的时候进行卖出,本质上是一种追涨杀跌的策略,很多市场由于羊群效用存在较多的趋势,如果可以控制好亏损时的额度,坚持住对趋势的捕捉,长期下来是可以获得额外收益的。

择时

量化择时是指采用量化的方式判断买入卖出点。如果判断是上涨,则买入持有;如果判断是下跌,则卖出清仓;如果判断是震荡,则进行高抛低吸。

常用的择时方法有:趋势量化择时、市场情绪量化择时、有效资金量化择时、SVM量化择时等。

仓位管理

仓位管理就是在你决定投资某个股票组合时,决定如何分批入场,又如何止盈止损离场的技术。

常用的仓位管理方法有:漏斗型仓位管理法、矩形仓位管理法、金字塔形仓位管理法等

止盈止损

止盈,顾名思义,在获得收益的时候及时卖出,获得盈利;止损,在股票亏损的时候及时卖出股票,避免更大的损失。

及时的止盈止损是获取稳定收益的有效方式。

一个策略往往会经历产生想法、实现策略、检验策略、运行策略、策略失效几个阶段。

产生想法

任何人任何时间都可能产生一个策略想法,可以根据自己的投资经验,也可以根据他人的成功经验。

实现策略

产生想法到实现策略是最大的跨越,实现策略可以参照上文提到的“一个完整的量化策略包含哪些内容?”

检验策略

策略实现之后,需要通过历史数据的回测和模拟交易的检验,这也是实盘前的关键环节,筛选优质的策略,淘汰劣质的策略。

实盘交易

投入资金,通过市场检验策略的有效性,承担风险,赚取收益。

策略失效

市场是千变万化的,需要实时监控策略的有效性,一旦策略失效,需要及时停止策略或进一步优化策略。

Q3:基金的量化投资策略有哪些?量化投资常见的策略和产品

;     量化投资是指通过数量化方式和计算机程序发出买卖指令,以获取稳定收益为目的的交易方式,在投资的过程中需要用到数学、统计学、信息技术等知识。

      市场上的量化策略包括市场多头趋势和市场表现中性两部分,市场多头趋势中包含指数增强和主动量化两个部分,市场表现中性中包括量化对冲,也就是所谓的阿尔法策略(α策略)。

      α策略就是指采用金融衍生工具对冲市场风险以后,去获得相对来说比较稳定的α收益,这类产品在几年也获得了比较大的发展。量化其实是一个非常宽泛的概念,涉及到各种不同的资产类别,比如说商品期货上,量化有一系列的CTA策略,另外,还有多策略量化。

      如果是从公募基金的角度来看,市场上主流的量化策略主要包括三类:

      第一类是主动量化策略

      主动量化策略是通过量化的方式来选股,再结合主动的基本面筛选,构建这样一类主动加量化结合的策略。

      第二类是指数增强策略

      指数增强是指首先跟踪某一个指数,一般是市场上比较主流的宽基指数,比如沪深300或者中证500甚至有中证1000的指数,在这个指数基础上会追求长期稳定的超额收益,也就是增强的阿尔法部分。

      第三类量化对冲的阿尔法策略

      量化对冲的阿尔法策略的核心,还是指数增强的组合,去获得相对于指数的超额收益,但同时会引入股指期货做对冲,把市场或者我们称之为指数的波动剥离掉,获得比较稳定的阿尔法收益。

      这类策略在过去的五年,尤其是的两到三年,规模也获得非常大的增长。从2015年的150亿左右的规模增长到现在的650亿左右,也是公募基金中现在非常主流的一类策略。

Q4:什么是量化投资交易策略

一文看懂量化投资策略

闲话基

量化投资在近些年受到越来越多的关注,包括规模、策略、业绩。量化投资,是指通过借助统计学、数学方法,运用计算机从海量历史数据中,寻找能够带来超额收益的多种“大概率”策略,按照策略构建的数量模型严格执行投资,力求获得长期稳定可持续高于平均的超额回报。

跟传统的主动管理方法相比,量化投资是高投资广度、低投资深度的一种投资方法。量化投资强调纪律投资,可以克服投资者主观情绪的影响。

现在市场上运用的策略有很多种,下面来看看主流的几种策略。

一、市场中性策略

市场中性策略是国内使用最多的策略。根据CAPM理论,股票收益由两部分组成,一部分是市场整体风险的beta收益,一部分是股票自身风险带来的alpha收益。中性策略是从消除市场系统性风险的维度出发,通过同时构建多头和空头头寸对冲市场风险,以获得较稳定的绝对收益。国内通常使用的操作方法是,买入股票,同时卖空与股票等市值的股指期货。盈利模式是,所买股票超越大盘的涨跌幅度。市值对冲并不是完全的beta对冲,但可以减少计算量,降低调仓率,为国内投资机构普遍使用。

Alpha策略关键点是选出的股票组合收益要持续跑赢沪深300指数,在市场上涨时平均涨幅大于沪深300指数,在市场下跌时平均跌幅小于沪深300指数,并且可持续稳定。

通常管理人根据估值、成长性、市值、动量、预期变动、资金关注、技术指标、事件、业绩等多个维度进行量化选股,构造投资组合,同时以沪深300行业配置比例为基准,对系统筛选出的股票根据宏观经济和行业景气进行差异化配置,并定期根据各因子变动进行动态调整组合。

构建中性策略,买入100元股票组合,卖空100元股指期货,多头与空头组合价值相等:

1、市场上涨:股票组合(上涨赚钱)+指数收益(上涨亏钱)=10%+(-7%)=3%

2、市场下跌:股票组合(上涨赚钱)+指数收益(上涨亏钱)=(-7%)+10%=3%

3、市场震荡:股票组合(上涨赚钱)+指数收益(上涨亏钱)=10%+(7)=17%

Alpha策略最主要风险在于选股策略上。

选股模型可能会因为股票市场规律性变动、突发事件和统计模型本身的概率属性,在某些时间段出现失效,导致做多的股票跑输市场出现短期亏损。这需要基金经理能不断完善投资模型和操作技巧提升获胜概率。此外,Alpha策略还收到基差的影响。大部分时候会有一定的升贴水损失,策略对基差的风控非常重要。

二、套利策略

1、统计套利

统计套利是对历史数据进行统计分析,估计相关变量的概率分布,结合基本面数据分析,用来进行套利交易。

运用统计分析工具,对一组相关联的价格之间的关系的历史数据进行研究分析,研究关系的历史稳定性,并估计其概率分布,确定分布中的极端区域,即否定域。当真实市场上的价格关系进入否定域,可以认为这种价格关系不可长久持续,此时有较高的成功概率进场套利。

2、期现套利

期现套利指利用期货与现货基差扩大产生的套利机会,做多被低估标的,做空被高估标的,待期现基差回归至合理范围后,平仓离场的低风险策略。

期现套利策略,根据沪深300股指期货与沪深300指数基差到期时必定收敛的交易机制。当期货指数与沪深300指数基差足够大时,可以通过构建一个反向组合,获得基差收敛过程中产生的收益。目前国内只能进行“做空基差”的正向套利,即当基差大于0的时候,买入股指ETF或者一揽子股票,同时卖出等市值股指期货,待价差收敛后平仓。当基差小于0时,由于融券不足,无法通过卖出股指ETF或者一揽子股票同时买入等市值的股指期货进行“做多基差”的反向套利。当期货价格深深贴水的时候,因融券存在障碍反向套利被切断,贴水状态自由发展,只能通过市场大幅度反弹,多头的投机者重新将价格抬升至升水的状态。这也是市场贴水一直无法及时恢复的重要原因。

期现套利的主要风险在于市场价格出现剧烈波动导致浮亏,具体表现为所跟踪标的之间的基差出现长时间不回归甚至反向逆转,期现收益无法有效覆盖交易成本、冲击成本、现金成本等风险。

3、ETF套利

ETF套利,是指投资者可以在一级市场通过置顶的ETF交易商想基金管理公司,用一揽子股票组合申购ETF份额,或者把ETF份额赎回成一揽子股票组合,同时可以在二级市场以市场价格买卖ETF。

假设某只ETF成分股暴跌,使得该ETF净值迅速走低,但该ETF的市场价格未能及时跟上,两者短暂地出现一个价差,此时可以买入ETF一揽子股票组合申购成ETF,然后将ETF在二级市场卖出,实现低买高卖,获取价差。

ETF套利的两种交易顺序,一种是从股票二级市场买入一揽子股票,按一定比例换成ETF份额,然后在二级市场卖出ETF份额,前提是一揽子股票价格比ETF价格低,出现溢价;另一种是,从ETF二级市场买入份额,按照一定比例兑换成一揽子股票,在拿到股票二级市场卖出,这样的前提是ETF价格低于一揽子股票价格,出现折价。

4、分级基金套利

分级基金有2种套利模式。

一种方式是当母子基金比价出现折溢价时可进行套利。当A/B份额的组合价格大于母基金净值时,存在整体溢价套利机会。通过场内申购母基金份额,分拆成A和B并在二级市场卖出完成溢价套利。当A/B份额的组合价格小于母基金净值时,存在整体折价套利机会。通过在二级市场按比例买入A类份额和B类份额,申请合并成母份额并赎回完成折价套利。

但是折溢价套利不能实时完成,需要面临1-2个交易日的价格波动风险。可以通过股指期货对冲管理风险敞口。

一般在牛市中溢价套利机会比较多,在震荡市场中折价套利机会更多、胜率更高。

另一种套利方式是,市场下跌时,含下折算条款的分级基金A份额包含的期权价值套利,同时还有在整体折溢价套利基础上演的底仓-对冲溢价套利、循环折价套利。

三、CTA策略

CTA策略是投向期货市场,使用历史数据,通过统计、数学、编程的方法找到盈利规律。分为趋势策略和套利策略。

趋势策略是跟随者市场上涨做多,市场下跌做空,因此在任何一种期货商品进入趋势后,CTA策略就会获得良好的收益空间。

套利策略是通过跨期限、跨市场、跨品种等不同合约之间的“价差回归”,锁定套利空间。

跨期限是指同一交易品种,不同交易周期间的套利。历史数据表明期货不同合约价格相关性高,价差出现稳定的统计特征。当两个不同到期月份合约/不同品种合约之间的价差偏离合理区间时,可以通过在期货市场同时买入低估值合约和卖出高估值合约,在价差回归后进行反向平仓,进行跨期限套利交易。

更加具体地说,跨期套利是指不同月份期货支架的套利。通过多远空近或多近空远,来买卖同一市场同种商品不同到期月份的期货合约,利用不同到期月份合约的价差变动来获利的套利模式。

交易过程如下:

跨品种与跨期现套利逻辑相似,只是使用在同一期限不同品种合约之间,具体投资流程如下:

跨市场套利,在某个交易所买入(卖出)某一交割月份的某种商品合约,同时在另一个交易所卖出(买入)统一交割月份的同种商品合约,在有利时机分别在两个交易所对冲获利。

跨市场策略涉及外汇兑换、国际期货交易对冲,交易实现难度大,国内用得少。

由于期货具有杠杆属性,这类策略持仓的市值往往很大,有时候甚至超过产品资产总值,导致收益率的波动率是所有量化策略中最大的。在市场出现连续震荡行情时,这样策略由于杠杆属性会出现较大的回撤。另外一个对这类策略的一个限制是,目前市场上活跃交易的期货品种不多,高频交易很大程度倚重于品种成交量,开平仓时间间隔较短,使得策略容量不大。

Q5:股票里面的量化是什么意思

股票里面的量化指的是用先进的数学模型代替主观判断,然后从庞大的历史数据中海选能带来超额收益的情况以制定策略,随后用数量模型验证及固化这些规律和策略。此外,量化交易是指利用统计学,数学,计算机技术和现代的金融理论,来辅助投资者更好地盈利。

拓展资料

一、常见的十大量化投资策略

01、海龟交易策略

海龟交易策略是一套非常完整的趋势跟随型的自动化交易策略。这个复杂的策略在入场条件、仓位控制、资金管理、止损止盈等各个环节,都进行了详细的设计,这基本上可以作为复杂交易策略设计和开发的模板。

02、阿尔法策略

阿尔法的概念来自于二十世纪中叶,经过学者的统计,当时约75%的股票型基金经理构建的投资组合无法跑赢根据市值大小构建的简单组合或是指数,属于传统的基本面分析策略。

在期指市场上做空,在股票市场上构建拟合300指数的成份股,赚取其中的价差,这种被动型的套利就是贝塔套利。

03、多因子选股

多因子模型是量化选股中最重要的一类模型,基本思想是找到某些和收益率最相关的指标,并根据该指标,构建一个股票组合,期望该组合在未来的一段时间跑赢或跑输指数。如果跑赢,则可以做多该组合,同时做空期指,赚取正向阿尔法收益;如果是跑输,则可以组多期指,融券做空该组合,赚取反向阿尔法收益。多因子模型的关键是找到因子与收益率之间的关联性。

04、双均线策略

双均线策略,通过建立m天移动平均线,n天移动平均线,则两条均线必有交点。若m>n,n天平均线“上穿越”m天均线则为买入点,反之为卖出点。该策略基于不同天数均线的交叉点,抓住股票的强势和弱势时刻,进行交易。

双均线策略中,如果两根均线的周期接近,比如5日线,10日线,这种非常容易缠绕,不停的产生买点卖点,会有大量的无效交易,交易费用很高。如果两根均线的周期差距较大,比如5日线,60日线,这种交易周期很长,趋势性已经不明显了,趋势转变以后很长时间才会出现买卖点。也就是说可能会造成很大的亏损。所以两个参数选择的很重要,趋势性越强的品种,均线策略越有效。

05、行业轮动

行业轮动是利用市场趋势获利的一种主动交易策略其本质是利用不同投资品种强势时间的错位对行业品种进行切换以达到投资收益最大化的目的。

06、跨品种套利

跨品种套利指的是利用两种不同的、但相关联的指数期货产品之间的价差进行交易。这两种指数之间具有相互替代性或受同一供求因素制约。跨品种套利的交易形式是同时买进和卖出相同交割月份但不同种类的股指期货合约。主要有相关商品间套利和原料与成品之间套利。

跨品种套利的主要作用一是帮助扭曲的市场价格回复到正常水平;二是增强市场的流动性。

07、指数增强

增强型指数投资由于不同基金管理人描述其指数增强型产品的投资目的不尽相同,增强型指数投资并无统一模式,唯一共同点在于他们都希望能够提供高于标的指数回报水平的投资业绩。为使指数化投资名副其实,基金经理试图尽可能保持标的指数的各种特征。

08、网格交易

网格交易是利用市场震荡行情获利的一种主动交易策略,其本质是利用投资标的在一段震荡行情中价格在网格区间内的反复运动以进行加仓减仓的操作以达到投资收益最大化的目的。通俗点讲就是根据建立不同数量,不同大小的网格,在突破网格的时候建仓,回归网格的时候减仓,力求能够捕捉到价格的震荡变化趋势,达到盈利的目的。

09、跨期套利

跨期套利是套利交易中最普遍的一种,是股指期货的跨期套利(Calendar Spread Arbitrage)即为在同一交易所进行同一指数、但不同交割月份的套利活动。

10、高频交易策略

高频交易是指从那些人们无法利用的极为短暂的市场变化中寻求获利的计算机化交易,比如,某种证券买入价和卖出价差价的微小变化,或者某只股票在不同交易所之间的微小价差。这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”安置到了离交易所的计算机很近的地方,以缩短交易指令通过光缆以光速旅行的距离。(该策略源码模板暂无)

Q6:什么是量化投资?有哪些常见的量化投资策略?

量化投资是在投资过程中运用数学、统计学、信息技术等知识。投资者会收集股票的数据,然后依靠计算机系统强大的信息处理能力,用先进的数学模型代替人工的主观判断,从而在控制风险的前提下实现最大回报。

量化投资有很多优点,例如,投资策略是基于大规模的数据,执行不受投资者情绪的影响,可以有效克服认知偏差,可以快速跟踪市场变化,不断寻找新的统计模型,以提供超额回报,并寻找新的交易机遇。 量化 投资作为有效风险控制的前提,可以作为投资多元化的工具。例如,定量投资可以从历史数据中挖掘出一定的规律并加以利用。这些规则可以以更大的概率获得投资回报。

在量化交易过程中,量化投资思维的应用几乎涵盖了投资的整个过程,从投资目标的选择、组合策略的分析、策略的实施到投资目标,最后到投资策略的风险控制和回馈,其特点使定量思维在不同的投资领域中变得独特,不同投资风格的形成,内容的焦点也各不相同。与最优策略相关的几个概念,包括趋势策略、定量对冲策略、套利策略、高频策略和算法交易,尤其令人担忧的是算法交易。

量化投资流行的原因,甚至带有主观的投资趋势,这必然具有量化投资的优势。总而言之,有以下几点:它基于数理统计,更接近一门科学,让未来更容易预测和感知,可以全年实时监控所有市场和交易,而人类不能。它避免了人的情感,完全由机器自动化,严格执行纪律。过程和风险更加可控。这些优势逐渐将量化投资带入我们的视野,并被越来越多的投资者所接受。

量化投资策略的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于量化投资策略有哪些、量化投资策略的信息别忘了在星星财富网进行查找喔。